Sharp Finiteness Principles For Lipschitz Selections

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on Spectral Clusters for Lipschitz Metrics

We establish Lp bounds on L2 normalized spectral clusters for selfadjoint elliptic Dirichlet forms with Lipschitz coefficients. In two dimensions we obtain best possible bounds for all 2 ≤ p ≤ ∞, up to logarithmic losses for 6 < p ≤ 8. In higher dimensions we obtain best possible bounds for a limited range of p.

متن کامل

Lipschitz selections of the diametric completion mapping in Minkowski spaces

We develop a constructive completion method in general Minkowski spaces, which successfully extends a completion procedure due to Bückner in twoand three-dimensional Euclidean spaces. We prove that this generalized Bückner completion is locally Lipschitz continuous, thus solving the problem of finding a continuous selection of the diametric completion mapping in finite dimensional normed spaces...

متن کامل

The Whitney Extension Problem and Lipschitz Selections of Set-valued Mappings in Jet-spaces

We study a variant of the Whitney extension problem (1934) for the space Ck,ω(Rn). We identify Ck,ω(Rn) with a space of Lipschitzmappings from Rn into the space Pk × Rn of polynomial fields on Rn equipped with a certain metric. This identification allows us to reformulate the Whitney problem for Ck,ω(Rn) as a Lipschitz selection problem for set-valued mappings into a certain family of subsets o...

متن کامل

SHARP LIPSCHITZ ESTIMATES FOR OPERATOR ∂̄M ON A q-CONCAVE CR MANIFOLD

We prove that the integral operators Rr and Hr constructed in [P] and such that f = ∂̄MRr(f) + Rr+1(∂̄Mf) +Hr(f), for a differential form f ∈ C (0,r) (M) on a regular q-concave CR manifold M admit sharp estimates in the Lipschitz scale.

متن کامل

Regularity of Set-Valued Maps and Their Selections through Set Differences. Part 1: Lipschitz Continuity

We introduce Lipschitz continuity of set-valued maps with respect to a given set difference. The existence of Lipschitz selections that pass through any point of the graph of the map and inherit its Lipschitz constant is studied. We show that the Lipschitz property of the set-valued map with respect to the Demyanov difference with a given constant is characterized by the same property of its ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometric and Functional Analysis

سال: 2018

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s00039-018-0467-6